This appeared last week:
Will Gathering Vast Troves of Information Really Lead To Better Health?
December 28, 20173:55 PM ET
Heard on All Things Considered
The Mayo Clinic is building its future around high-tech approaches to research known as "precision medicine." This involves gathering huge amounts of information from genetic tests, medical records and other data sources to ferret out unexpected ideas to advance health. But one longtime scientist at the Mayo Clinic isn't playing along.
Dr. Michael Joyner is a skeptical voice in a sea of eager advocates. Joyner's lab studies exercise. It is, fittingly enough, in a hospital building founded in the 1880s. While Mayo has built all sorts of new labs at its sprawling campus in Rochester, Minn., Joyner can conduct his work without glitzy DNA sequencers and other high-tech tools of precision medicine.
And it's not simply that he's an old-school devotee. He believes that the solution to our most pressing health problems lies in thinking about whole human beings, not breaking everything down to DNA sequences.
"The enthusiasm for this [precision medicine] is occurring in a country where life expectancy is actually falling," he says as he walks through the old linoleum-tiled halls of St. Mary's hospital.
That fact alone leads Joyner to ask whether the money being poured into high-tech medical research is really solving the nation's stark health problems, like obesity, heart disease, high blood pressure, diabetes, Alzheimer's disease and cancer.
Joyner says there are certainly appropriate places to use this technology, and he doesn't dispute the individual stories of success his colleagues tout. But he believes the best way to address the health concerns facing the nation is by studying � and treating � whole people, not by breaking the problems down to billions of genetic bits and pieces.
He practices what he preaches in both his personal life � his thorough exercise routine includes commuting by bicycle � and his physiology lab.
On the day I visited at the end of August, volunteer Greg Ruegsegger was outfitted with monitors, a catheter threaded into a vein and a mask to capture his breath. He would exercise to the point of exhaustion while scientists studied him. This is far more informative than any genetic test, Joyner says.
"People have looked at 3,000 elite endurance athletes � these are people who compete in the Tour de France and win Olympic medals in cross-country skiing and distance running � and [scientists] have been unable to find any genetic marker for superior performance."
And when it comes to the health of ordinary people, Joyner talks about real-world studies, which show that walking or biking to work has four- or fivefold more influence on a person's body mass index than that person's genetic profile.
Joyner is focused on how the body's systems work together during exercise, but the same interconnectedness applies to many diseases. That's why cancer drugs that target one biological pathway generally don't last long. Tumor cells simply find workarounds, exploiting the redundancies deeply embedded in biology. And that's why Joyner has so little faith in science that keeps trying to focus down on smaller and smaller details.
"One of the things we have to ask ourselves when we get these big initiatives is, 'What's the definition of success?' " he says.
Scientific discoveries alone don't do it for him. Doctors need to build effective treatments � and patients need to follow along. This is the promise of precision medicine in the long run, but Joyner has published articles (like this one) skeptical of the drive to collect vast piles of information, hoping to make sense of it later.
"Is this just going to be a biological Tower of Babel," he asks, or will this information also lead to discoveries that translate beyond the laboratory and actually change public health for the better?
He doesn't doubt that DNA sequencing and other tools of precision medicine are useful in specific instances, such as for diagnosing rare diseases. There are a few uses in cancer treatment, but so far there has been just one randomized study of patients assigned to treatments based on their tumor's DNA profile, and it showed no advantage over traditional medical judgment.
This isn't a popular point of view elsewhere at the Mayo Clinic, which is sinking hundreds of millions of dollars a year into precision medicine. The shiny new labs across campus seem a world apart from Joyner's physiology lab.
After my conversation with Joyner, Mayo public affairs officers eagerly led me to a series of scientists there who disagree with him. One stop was at the Medical Genome Facility.
Lots more here (and you can listen too):
I will leave the reader to make up their own mind as to what they think!
David.
No comments:
Post a Comment